1. Den unika karaktären av att göra energiutrustning gör kvalitetskontroll viktigare .
There are three main things that make making energy equipment difficult. First, the materials have very extreme properties. For example, gas turbine blades have to be able to handle temperatures of 1500℃and stress of 300 MPa. Second, the structures are very complicated. For instance, the steam generator in a nuclear power plant has tens of thousands of fine Rör . För det tredje har servicemiljön blivit tuffare . till exempel, offshore vindkraftsutrustning måste kunna motstå saltspray korrosion och tyfonskador . Dessa egenskaper gör kvalitetskontroll i metall 3D -utskrift tre gånger så hårt:
Control of the stability of material properties: Under harsh working circumstances, the printed parts must not fail in ways like creep and fatigue fracture. For instance, gas turbine blades made with Inconel 718 nickel-based alloy need hot isostatic pressing (HIP) treatment to get rid of internal pores and make the blades last more than twice as long as ordinary castings.
Geometrisk precisionskontroll med sluten slinga: För exakta delar som kontrollstångens mekanismer i kärnkraftsreaktorer måste storleken toleranser hållas inom ± 0 . 05mm . ett företag har lagt till en laserinterometri mätningssystem till sin slm-utrustning så att det kan fixa fel i form och position i verklig tid medan det är tryckt i en laserinterferometri-mätningssystem till sin Slm-utrustning så att det kan fixa fel i form och position i verklig tid medan det är tryckt {{{{{{{{{{{{{{{{{; Kvalifikationsgraden från 82% till 97%.
Complete coverage of finding defects: The technology behind industrial CT scanning can find micro hole faults with a diameter of 0.02mm or greater and create 3D models of printed products. A company that makes wind power equipment set up a defect database and utilised machine learning algorithms to smartly look at CT images. This cut the time it takes to find defects from 4 hours to 20 minuter.
2. Hela processens kvalitetskontrollsystemets fyra pelare
(1) Kontroll av materialprestanda vid källan
Three checks on the quality of the powder: Set up a system to manage batches of powder so that you can test the chemical composition (using ICP-AES detection), the particle size distribution (using the laser diffraction method), and the flowability (using a Hall current meter) on each batch of metal powder. One company that makes energy equipment says that the D50 particle size of 316L stainless steel powder should be between 25 and 35 μm, hallflödeshastigheten bör vara mindre än eller lika med 25S/50G, och syreinnehållet bör vara mindre än eller lika med 0 . 05%.
Building a material database: Make a process parameter database with 12 alloys that are often used in the energy area. This database should include important information like the shape of the melt pool and the likelihood of different powder batches to spheroidise at certain energy densities. For instance, the database reveals that the best density (99.2%) and tensile Styrka (320MPa) för ALSI10mg aluminiumlegeringen kan nås med en laserkraft på 350W och en skanningshastighet på 1200 mm/s.
(2) Kontroll av utskriftsprocessen i realtid
Simulation of interaction between multiple physical fields: We utilise ANSYS Workbench software to do thermal mechanical coupling simulations on the printing process and figure out how the residual stress would be spread out. A company that makes nuclear power equipment utilised simulation optimisation to alter the printing orientation from the Z-axis to a 45℃angle. This cut the Z-axis shrinkage rate from 0 . 8% till 0,3% och gjorde problem med skiktning av mellanlager mycket mindre vanliga.
Användning av ett stängd slingkontrollsystem: Lägg en infraröd termometer och en smältpoolövervakningskamera i SLM-utrustning så att den kan ge dig realtidsinformation om storleken (fel ± 10 μm) och temperaturen (fel ± 5 grader) av smältpoolen .} om den smälta poolens bredd går över det förutbestämda värdet med 15%, systemet AUTOMATATISKT ALLA SPANERA SCANATION OCH SCANNING TO HAPP till HAVE POLEN POLE) stabil .
(3) Exakt kontroll av efterbehandlingstekniken
Optimising the heat treatment process: A two-stage annealing procedure has been devised for Ti6Al4V titanium alloy printed parts. The first step is to change the phase at 920℃for 2 hours. The second step is to refine the + phase structure at 730℃for 4 hours. The printed parts' fatigue strength went up by 40% after this processing, reaching 680MPA .
Integration of surface modification technology: Micro arc oxidation (MAO) technique makes a 50 μm thick ceramic coating on the surface of parts that are likely to corrode, including offshore wind turbine gearbox bearings. This increases the duration they can resist salt spray corrosion from 500 hours to over 2000 hours.
(4) Smart förbättrar kvalitetskontrollen
A mixture of non-destructive testing technologies: Set up a three-level testing system that includes "industrial CT, ultrasonic phased array, and eddy current testing." First, use industrial CT (resolution 10 m) to scan the whole gas turbine combustion chamber, which is 200 mm in diameter. Then, use ultrasonic phased array fine testing (resolution 0 . 1 mm) För att kontrollera alla regioner som ser misstänkta . Slutligen, använd virvelströmtest för att kontrollera för sprickor på ytan.
How to use digital twin technology: Make digital copies of printed parts and keep track of how they are doing in real time. A specific company has added a fatigue life prediction algorithm to their digital twin model. This can give a 6-month early notice of certain equipment breakdown risks and cut down on unplanned downtime by 65%.
Hur styr man kvaliteten på metall 3D -utskrift i produktion av energiutrustning?
Jul 31, 2025
Skicka förfrågan